

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

MAESTRÍA EN CIENCIAS MATEMÁTICAS

Programa de la actividad académica Fundamentos de Combinatoria								
Clave	Clave Semestre Cr 1,2,3 o 4		Créditos 9	Campo de conocimiento	Matemáticas Discretas			3
Modalidad Curso Básic		Básico	Tipo T (X) P ()		P()	T/P ()		
Carácter Obligatorio de Elección			Horas					
Duración del programa Semestral			S	Semana		Semestre		
					Teóric	as: 4.5		Teóricas: 72
					Práctio	as: 0		Prácticas: 0
					Total:	4.5		Total: 72

		Seriación
		Ninguna (X)
		Obligatoria ()
Actividad antecedente	académica	
Actividad subsecuente	académica	
		Indicativa ()
Actividad antecedente	académica	
Actividad subsecuente	académica	

Objetivo general:

Proveer al alumno de los conocimientos básicos necesarios que un estudiante a nivel posgrado debe de tener en el área de Combinatoria y Matemáticas Discretas.

Objetivos específicos:

Que el alumno:

- Aprenda diversos métodos de conteo fundamentales dentro de las Matemáticas Discretas.
- Conozca estructuras combinatorias como lo son las ternas de Steiner, los cuadrados latinos y los diseños de bloques, entre otros.
- Conozca parte de la Teoría de Conjuntos y Grupos que está ampliamente relacionada con la Combinatoria.

Índice temático				
	Tema	Horas		

		semestre	
		Teóricas	Prácticas
1	Conceptos y métodos básicos	9	0
2	Relaciones de recurrencia	9	0
3	Funciones generadoras	9	0
4	Cuadrados Latinos	7.5	0
5	Teoría extremal de conjuntos	7.5	0
6	Sistemas de Steiner	6	0
7	Conjuntos parcialmente ordenados y redes (lattices)	7.5	0
8	Enumeración bajo acciones de grupo	7.5	0
9	Diseños	9	0
	Total	72	0
	Suma total de horas	7	2

Contenido Temático					
	Tema y subtemas				
1	Conceptos y métodos básicos 1.1 Identidades combinatorias 1.2 Factoriales y coeficientes binomiales 1.3 Permutaciones y combinaciones 1.4 Doble conteo y Principio del Palomar 1.5 Principio de Inclusión y Exclusión 1.6 Números de Stirling				
2	Relaciones de recurrencia 2.1 Números de Fibonacci 2.2 Series de potencias 2.3 Relaciones de recurrencia lineales con coeficientes constantes 2.4 Desarreglos e involuciones 2.5 Números de Bell y de Catalán				
3	Funciones generadoras 3.1 Funciones generadoras ordinarias 3.2 Funciones generadoras exponenciales 3.3 Inversión de Lagrange				
4	Cuadrados Latinos 4.1 Cuadrados latinos 4.2 Sistemas de distintos representantes (Teorema de Hall) 4.3 Cuadrados latinos ortogonales				
5	Teoría extremal de conjuntos 5.1 Teorema de Sperner 5.2 Teorema de DeBruijn-Erdös				
6	Sistemas de Steiner 6.1 Sistemas de Steiner (definición y propiedades básicas) 6.2 Sistemas de tripletas de Steiner (existencia y construcciones)				
7	Conjuntos parcialmente ordenados y redes (lattices) 7.1 Extensión lineal de un conjunto parcialmente ordenado (CPO) 7.2 Cadenas y anticadenas (Teorema de Dilworth) 7.3 Inversión de Möbius				
8	Enumeración bajo acciones de grupo 8.1 Teorema de Burnside (orbit counting lema) 8.2 Teorema de enumeración de Polya				
9	Diseños 9.1 Diseños de bloques 9.2 Desigualdad de Fisher				

- 9.3 Teorema de Bruck-Ryser-Chowla
- 9.4 Diseños a partir de geometrías finitas
- 9.5 Matrices de Hadamard

Estrategias didácticas	Evaluación del aprendizaje		
Exposición oral X		Exámenes parciales	Х
Trabajo en equipo		Examen final escrito	Х
Lecturas		Trabajos y tareas	Х
Trabajo de investigación		Presentación de tema	
Prácticas (taller o laboratorio)		Participación en clase	X
Prácticas de campo		Asistencia	
Aprendizaje por proyectos		Rúbricas	
Aprendizaje basado en problemas		Portafolios	
Casos de enseñanza		Listas de cotejo	
Otras (especificar)		Otras (especificar)	
Ejercicios dentro de clase	X		
Ejercicios fuera del aula	X		

Perfil profesiográfico			
Grado	Maestro o Doctor en Ciencias Matemáticas		
Experiencia docente			
Otra característica			

Bibliografía Básica:

- Jiri Matousek y Jaroslav Nesetril. Invitation to Discrete Mathematics. Second Edition, Oxford University Press, 2008.
- Peter Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1995.

Bibliografía Complementaria:

- Anna Sánchez Lladó, Joseph Fábrega Cannudas, Oriol Serra Albó, Matemática Discreta, Ediciones Upc, 2001.
- Flajolet, Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
- Herbert Wilf, Generatingfunctionology, Crc Press, 2006.
- Ian Anderson, Combinatorics Of Finite Sets, Oxford University Press, 1987.
- Jacobus H. Van Lint, Wilson, Combinatorics, Cambridge University Press, 2 Edition (2001)
- Martin Aigner, A Course in Enumeration, Springer, 2007.